

Figure 1 – Valeurs des moments d'inertie I par rapport à un axe de quelques solides homogènes [1]. Dans les expressions, m désigne la masse totale du solide. L'encadré rappelle le théorème de Huygens, donnant la valeur du moment d'inertie I par rapport à l'axe indiqué en fonction de I_{Δ} , celui passant par le centre d'inertie du solide.

[1] R. TAILLET, L. VILLAIN & P. FEBVRE. Dictionnaire de physique. 3e éd. De Boeck, 2013.

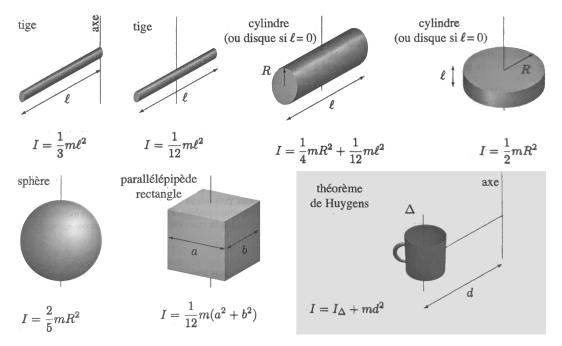


Figure 1 – Valeurs des moments d'inertie I par rapport à un axe de quelques solides homogènes [1]. Dans les expressions, m désigne la masse totale du solide. L'encadré rappelle le théorème de Huygens, donnant la valeur du moment d'inertie I par rapport à l'axe indiqué en fonction de I_{Δ} , celui passant par le centre d'inertie du solide.

[1] R. TAILLET, L. VILLAIN & P. FEBVRE. Dictionnaire de physique. 3e éd. De Boeck, 2013.

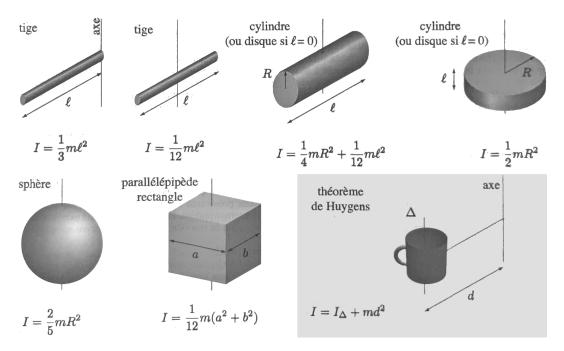


Figure 1 – Valeurs des moments d'inertie I par rapport à un axe de quelques solides homogènes [1]. Dans les expressions, m désigne la masse totale du solide. L'encadré rappelle le théorème de Huygens, donnant la valeur du moment d'inertie I par rapport à l'axe indiqué en fonction de I_{Δ} , celui passant par le centre d'inertie du solide.

[1] R. TAILLET, L. VILLAIN & P. FEBVRE. Dictionnaire de physique. 3e éd. De Boeck, 2013.

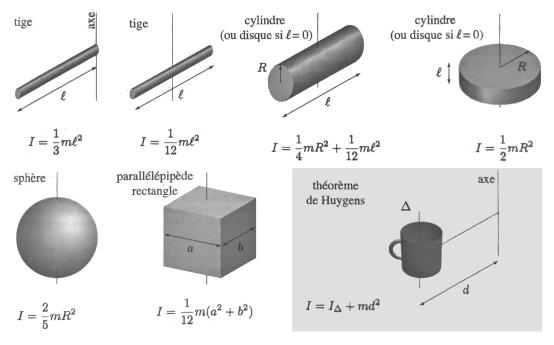


Figure 1 – Valeurs des moments d'inertie I par rapport à un axe de quelques solides homogènes [1]. Dans les expressions, m désigne la masse totale du solide. L'encadré rappelle le théorème de Huygens, donnant la valeur du moment d'inertie I par rapport à l'axe indiqué en fonction de I_{Δ} , celui passant par le centre d'inertie du solide.

[1] R. TAILLET, L. VILLAIN & P. FEBVRE. Dictionnaire de physique. 3e éd. De Boeck, 2013.

Type	Translation	Rotation
Position	x (1D), \vec{x} (3D), en mètre (m)	θ , en radian (rad)
Mouvement = variation de la position au cours du temps	$v = \frac{dx}{dt} = \dot{x} \text{ (1D)}$ $\vec{v} = \frac{d\vec{x}}{dt} = \dot{\vec{x}} \text{ (3D)}$ vitesse « linéaire » en mètre par seconde (m·s ⁻¹)	$\Omega = \frac{\mathrm{d}\theta}{\mathrm{d}t} = \dot{\theta}$ $\Omega = \frac{2\pi}{60}n, n \text{ en tr/min}$ vitesse angulaire ou de rotation en radian par seconde (rad·s ⁻¹ = s ⁻¹)
Accélération = variation du mvmt. au cours du temps	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2x}{\mathrm{d}t^2} = \dot{v} = \ddot{x} \text{ (1D)}$ $\vec{a} = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \frac{\mathrm{d}^2\vec{x}}{\mathrm{d}t^2} = \dot{\vec{v}} = \ddot{\vec{x}} \text{ (3D)}$ accélération « linéaire » en mètre par seconde carré (m·s ⁻²)	$\alpha = \frac{d\Omega}{dt} = \frac{d^2\theta}{dt^2} = \dot{\Omega} = \ddot{\theta}$ accélération angulaire ou de rotation en radian par seconde carré $(\text{rad} \cdot \text{s}^{-2} = \text{s}^{-2})$
Inertie = résistance à une variation du mymt.	la masse m , en kilogramme (kg)	le moment d'inertie J en kg·m² $J=\int r^2\mathrm{d}m$ Cylindre en rotation autour de son axe : $J=\tfrac{1}{2}mr^2$
Inertie × mvmt	quantité de mouvement \vec{p} en kg·m·s ⁻¹ $\vec{p} = m\vec{v}$	moment cinétique \vec{L} en kg·m²·s ⁻¹ $\vec{L}_{/O} = \vec{r} \wedge \vec{p} = m\vec{r} \wedge \dot{\vec{r}} = mr^2 \dot{\theta} \vec{u}_{\Omega} \equiv J \vec{\Omega}$
Effort = permet de modifier le mouvement	la force F (1D) ou \vec{F} (3D) en newton (N) exemple : le poids $\vec{F}_g = m\vec{g}$	le moment d'une force par rapport

Tableau 1 – Analogie translation-rotation, partie dynamique.

Type	Translation	Rotation
Position	x (1D), \vec{x} (3D), en mètre (m)	θ , en radian (rad)
Mouvement = variation de la position au cours du temps	$v = \frac{dx}{dt} = \dot{x} \text{ (1D)}$ $\vec{v} = \frac{d\vec{x}}{dt} = \dot{\vec{x}} \text{ (3D)}$ vitesse « linéaire » en mètre par seconde (m·s ⁻¹)	$\Omega = \frac{\mathrm{d}\theta}{\mathrm{d}t} = \dot{\theta}$ $\Omega = \frac{2\pi}{60}n, n \text{ en tr/min}$ vitesse angulaire ou de rotation en radian par seconde (rad·s ⁻¹ = s ⁻¹)
Accélération = variation du mvmt. au cours du temps	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2x}{\mathrm{d}t^2} = \dot{v} = \ddot{x} \text{ (1D)}$ $\vec{a} = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \frac{\mathrm{d}^2\vec{x}}{\mathrm{d}t^2} = \dot{\vec{v}} = \ddot{\vec{x}} \text{ (3D)}$ accélération « linéaire » en mètre par seconde carré (m·s ⁻²)	$\alpha = \frac{d\Omega}{dt} = \frac{d^2\theta}{dt^2} = \dot{\Omega} = \ddot{\theta}$ accélération angulaire ou de rotation en radian par seconde carré $(\text{rad} \cdot \text{s}^{-2} = \text{s}^{-2})$
Inertie = résistance à une variation du mymt.	la masse m , en kilogramme (kg)	le moment d'inertie J en kg·m² $J=\int r^2\mathrm{d}m$ Cylindre en rotation autour de son axe : $J=\tfrac{1}{2}mr^2$
Inertie × mvmt	quantité de mouvement \vec{p} en kg·m·s ⁻¹ $\vec{p} = m\vec{v}$	moment cinétique \vec{L} en kg·m²·s ⁻¹ $\vec{L}_{/O} = \vec{r} \wedge \vec{p} = m\vec{r} \wedge \dot{\vec{r}} = mr^2 \dot{\theta} \vec{u}_{\Omega} \equiv J\vec{\Omega}$
Effort = permet de modifier le mouvement	la force F (1D) ou \vec{F} (3D) en newton (N) exemple : le poids $\vec{F}_g = m\vec{g}$	le moment d'une force par rapport à un axe de rotation $\overrightarrow{\mathcal{M}}_{F/O}(\overrightarrow{P}) = \overrightarrow{OP} \wedge \overrightarrow{F}$ en newton-mètre (N·m)

Tableau 1 – Analogie translation-rotation, partie dynamique.

Type	Translation	Rotation
Position	x (1D), \vec{x} (3D), en mètre (m)	θ , en radian (rad)
Mouvement = variation de la position au cours du temps	$v = \frac{dx}{dt} = \dot{x} \text{ (1D)}$ $\vec{v} = \frac{d\vec{x}}{dt} = \dot{\vec{x}} \text{ (3D)}$ vitesse « linéaire » en mètre par seconde (m·s ⁻¹)	$\Omega = \frac{\mathrm{d}\theta}{\mathrm{d}t} = \dot{\theta}$ $\Omega = \frac{2\pi}{60}n, n \text{ en tr/min}$ vitesse angulaire ou de rotation en radian par seconde (rad·s ⁻¹ = s ⁻¹)
Accélération = variation du mvmt. au cours du temps	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2x}{\mathrm{d}t^2} = \dot{v} = \ddot{x} \text{ (1D)}$ $\vec{a} = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \frac{\mathrm{d}^2\vec{x}}{\mathrm{d}t^2} = \dot{\vec{v}} = \ddot{\vec{x}} \text{ (3D)}$ accélération « linéaire » en mètre par seconde carré (m·s ⁻²)	$\alpha = \frac{d\Omega}{dt} = \frac{d^2\theta}{dt^2} = \dot{\Omega} = \ddot{\theta}$ accélération angulaire ou de rotation en radian par seconde carré $(\text{rad} \cdot \text{s}^{-2} = \text{s}^{-2})$
Inertie = résistance à une variation du mymt.	la masse m , en kilogramme (kg)	le moment d'inertie J en kg·m² $J=\int r^2\mathrm{d}m$ Cylindre en rotation autour de son axe : $J=\tfrac{1}{2}mr^2$
Inertie × mvmt	quantité de mouvement \vec{p} en kg·m·s ⁻¹ $\vec{p} = m\vec{v}$	moment cinétique \vec{L} en kg·m²·s ⁻¹ $\vec{L}_{/O} = \vec{r} \wedge \vec{p} = m\vec{r} \wedge \dot{\vec{r}} = mr^2 \dot{\theta} \vec{u}_{\Omega} \equiv J \vec{\Omega}$
Effort = permet de modifier le mouvement	la force F (1D) ou \vec{F} (3D) en newton (N) exemple : le poids $\vec{F}_g = m\vec{g}$	le moment d'une force par rapport

Tableau 1 – Analogie translation-rotation, partie dynamique.

Type	Translation	Rotation
Position	x (1D), \vec{x} (3D), en mètre (m)	θ , en radian (rad)
Mouvement = variation de la position au cours du temps	$v = \frac{dx}{dt} = \dot{x} \text{ (1D)}$ $\vec{v} = \frac{d\vec{x}}{dt} = \dot{\vec{x}} \text{ (3D)}$ vitesse « linéaire » en mètre par seconde (m·s ⁻¹)	$\Omega = \frac{\mathrm{d}\theta}{\mathrm{d}t} = \dot{\theta}$ $\Omega = \frac{2\pi}{60}n, n \text{ en tr/min}$ vitesse angulaire ou de rotation en radian par seconde (rad·s ⁻¹ = s ⁻¹)
Accélération = variation du mvmt. au cours du temps	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2x}{\mathrm{d}t^2} = \dot{v} = \ddot{x} \text{ (1D)}$ $\vec{a} = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \frac{\mathrm{d}^2\vec{x}}{\mathrm{d}t^2} = \dot{\vec{v}} = \ddot{\vec{x}} \text{ (3D)}$ accélération « linéaire » en mètre par seconde carré (m·s ⁻²)	$\alpha = \frac{d\Omega}{dt} = \frac{d^2\theta}{dt^2} = \dot{\Omega} = \ddot{\theta}$ accélération angulaire ou de rotation en radian par seconde carré $(\text{rad} \cdot \text{s}^{-2} = \text{s}^{-2})$
Inertie = résistance à une variation du mymt.	la masse m , en kilogramme (kg)	le moment d'inertie J en kg·m² $J=\int r^2\mathrm{d}m$ Cylindre en rotation autour de son axe : $J=\tfrac{1}{2}mr^2$
Inertie × mvmt	quantité de mouvement \vec{p} en kg·m·s ⁻¹ $\vec{p} = m\vec{v}$	moment cinétique \vec{L} en kg·m²·s ⁻¹ $\vec{L}_{/O} = \vec{r} \wedge \vec{p} = m\vec{r} \wedge \dot{\vec{r}} = mr^2 \dot{\theta} \vec{u}_{\Omega} \equiv J\vec{\Omega}$
Effort = permet de modifier le mouvement	la force F (1D) ou \vec{F} (3D) en newton (N) exemple : le poids $\vec{F}_g = m\vec{g}$	le moment d'une force par rapport à un axe de rotation $\overrightarrow{\mathcal{M}}_{F/O}(\overrightarrow{P}) = \overrightarrow{OP} \wedge \overrightarrow{F}$ en newton-mètre (N·m)

Tableau 1 – Analogie translation-rotation, partie dynamique.

Type	Translation	Rotation
Travail	$W_F = \vec{F} \cdot \vec{d} = Fd \cos \alpha$, en joules (J)	$W_{\mathcal{M}} = \overrightarrow{\mathcal{M}} \cdot \overrightarrow{\theta}$ avec $\overrightarrow{\theta}$ la rotation
= énergie fournie	avec \vec{d} le déplacement	avec $\vec{\theta}$ la rotation
à l'objet sur lequel	et $lpha$ l'angle entre \overrightarrow{F} et \overrightarrow{d}	
s'applique l'effort	$\Rightarrow \equiv \text{effort} \times \text{déplacement}$	
Puissance	$P_F = \vec{F} \cdot \vec{v}$, en watts (W)	$P_{\mathcal{M}} = \overrightarrow{\mathcal{M}} \cdot \overrightarrow{\Omega}$
d'un effort	$\Rightarrow \equiv \text{effort} \times \text{mouvement}$	
Énergie cinétique	$E_{\rm c} = \frac{1}{2}mv^2$	$E_{\rm c} = \frac{1}{2}J\Omega^2$
	$\Rightarrow \equiv \frac{1}{2}$ inertie × mouvement ²	

Tableau 2 – Analogie translation-rotation, partie énergétique.

Type	Translation	Rotation
Travail	$W_F = \vec{F} \cdot \vec{d} = Fd \cos \alpha$, en joules (J)	$W_{\mathcal{M}} = \overrightarrow{\mathcal{M}} \cdot \overrightarrow{\theta}$ avec $\overrightarrow{\theta}$ la rotation
énergie fournieà l'objet sur lequel	avec \vec{d} le déplacement et $lpha$ l'angle entre \vec{F} et \vec{d}	avec θ la rotation
s'applique l'effort	$\Rightarrow \equiv \text{effort} \times \text{déplacement}$	
Puissance	$P_F = \vec{F} \cdot \vec{v}$, en watts (W)	$P_{\mathcal{M}} = \overrightarrow{\mathcal{M}} \cdot \overrightarrow{\Omega}$
d'un effort	$\Rightarrow \equiv \text{effort} \times \text{mouvement}$	
Énergie cinétique	$E_{\mathrm{c}} = \frac{1}{2}mv^2$	$E_{ m c}=rac{1}{2}J\Omega^2$
	$\Rightarrow \equiv \frac{1}{2}$ inertie × mouvement ²	

Tableau 2 – Analogie translation-rotation, partie énergétique.

Type	Translation	Rotation
Travail	$W_F = \vec{F} \cdot \vec{d} = Fd \cos \alpha$, en joules (J)	$W_{\mathcal{M}} = \overrightarrow{\mathcal{M}} \cdot \overrightarrow{\theta}$ avec $\overrightarrow{\theta}$ la rotation
= énergie fournie	avec \vec{d} le déplacement	avec $\vec{\theta}$ la rotation
à l'objet sur lequel	et $lpha$ l'angle entre $ec{F}$ et $ec{d}$	
s'applique l'effort	$\Rightarrow \equiv \text{effort} \times \text{déplacement}$	
Puissance	$P_F = \vec{F} \cdot \vec{v}$, en watts (W)	$P_{\mathcal{M}} = \overrightarrow{\mathcal{M}} \cdot \overrightarrow{\Omega}$
d'un effort	$\Rightarrow \equiv \text{effort} \times \text{mo}$	puvement
Énergie cinétique	$E_{\mathrm{c}} = \frac{1}{2}mv^2$	$E_{\mathrm{c}} = \frac{1}{2}J\Omega^{2}$
	$\Rightarrow \equiv \frac{1}{2}$ inertie × mouvement ²	

Tableau 2 – Analogie translation-rotation, partie énergétique.

Type	Translation	Rotation
Travail	$W_F = \vec{F} \cdot \vec{d} = Fd \cos \alpha$, en joules (J)	$W_{\mathcal{M}} = \overrightarrow{\mathcal{M}} \cdot \overrightarrow{\theta}$ avec $\overrightarrow{\theta}$ la rotation
= énergie fournie	avec \vec{d} le déplacement	avec $\vec{\theta}$ la rotation
à l'objet sur lequel	et $lpha$ l'angle entre $ec{F}$ et $ec{d}$	
s'applique l'effort	$\Rightarrow \equiv \text{effort} \times \text{déplacement}$	
Puissance	$P_F = \vec{F} \cdot \vec{v}$, en watts (W)	$P_{\mathcal{M}} = \overrightarrow{\mathcal{M}} \cdot \overrightarrow{\Omega}$
d'un effort	$\Rightarrow \equiv \text{effort} \times \text{mo}$	uvement
Énergie cinétique	$E_{\rm c} = \frac{1}{2}mv^2$	$E_{ m c}=rac{1}{2}J\Omega^2$
	$\Rightarrow \equiv \frac{1}{2}$ inertie × mouvement ²	

Tableau 2 – Analogie translation-rotation, partie énergétique.